GreedyBoost: An Accurate, Efficient and Flexible Ensemble Method for B2B Recommendations

نویسندگان

  • Weipeng Zhang
  • Tobias Enders
  • Dongsheng Li
چکیده

Recommender systems have achieved great success in finding relevant products and services for individual customers, e.g. in B2C markets, during recent years. However, due to the diversity of enterprise clients’ requirements it is still an open question on how to successfully apply existing recommendation techniques in the B2B domain. This paper presents GreedyBoost — an accurate, efficient and flexible ensemble method for product and service recommendations in the B2B domain. Given a set of base models, GreedyBoost can sequentially add base models to the ensemble by a linear approach to minimize training error, so that the ensemble process is efficient. Meanwhile, GreedyBoost does not have any special requirement on base models and evaluation metrics, so that any kind of client requirements and sale & distribution purposes can be adapted. Experimental results on real-world B2B data demonstrate that GreedyBoost can achieve higher recommendation accuracy compared with two popular ensemble methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble-based Top-k Recommender System Considering Incomplete Data

Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...

متن کامل

An Efficient Method for Correlation of Vapor Pressure of Gaseous Compounds Containing C-H-O

Prediction of available vapor pressure data in the case of compounds containing C-H-O led to derivations and recommendations of standard equations for this property. The accuracy of vapor pressure estimations is essential to use as a basis to calculate acentric factor, thermal and equilibrium properties. In this study, according to the previous work, an accurate equation to estimate vapor press...

متن کامل

An efficient analytical solution for nonlinear vibrations of a parametrically excited beam

An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017